MA114 Summer 2018
 Worksheet 22 - Parametric Equations - 7/23/18

1. (a) How is a curve different from a parameterization of a curve?
(b) Parameterize the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(c) Do the two sets of parametric equations

$$
y_{1}(t)=5 \sin (t), x_{1}(t)=5 \cos (t), 0 \leq t \leq 2 \pi
$$

and

$$
y_{2}(t)=5 \sin (t), x_{2}(t)=5 \cos (t), 0 \leq t \leq 20 \pi
$$

represent the same parametric curve? Discuss.
2. Find a Cartesian equation for each curve.
(a) $c(t)=(2 \cos (t), 2 \sin (t))$
(b) $x=3 t-5, y=2 t+3$
3. Represent the curve $y=x^{3}$ from $x=0$ to $x=2$ as a parametric curve traced out exactly once on the indicated interval.
4. Find a parametrization $(x(t), y(t))$ for the curve $y=x^{2}$ satisfying $x(0)=3, y(0)=9$.
5. Describe $c(t)=(\sec (t), \tan (t))$ for $0 \leq t \leq \pi / 2$ in the form $y=f(x)$. Specify the domain of x.
6. A particle travels from the point $(2,3)$ to $(1,-1)$ along a straight line over the course of 5 seconds. Write down a set of parametric equations that describe the position of the particle for any time between 0 and 5 seconds.

